The “How to” for bstat/estat report

�EMBED Word.Picture.6���

Nitin Vengurlekar

Field Support Specialist

Oracle Corporation

July 16, 1997

First Draft

�
HOW TO READ A UTLBSTAT/UTLESTAT REPORT

I.	History and background of utlbstat/utlestat.

Utlbstat/utlestat , originally called bstat/estat in Oracle version 6, are a set of SQL utilities that generate a report based on database statistics that were collected during a user-defined time interval. These scripts are located in the $ORACLE_HOME/rdbms/admin directory. Utlbstat is run to initiate the collecting of statistics. This SQL script essentially creates all the collection-data tables and then inserts data samples into these tables. The Utlestat script is run at the end of the pre-defined interval. This script gathers the ending statistics , creates summary tables from the collection-data tables and then finally generates an output file. The output file is spooled out into the $ORACLE_HOME/rdbms/admin/report.txt file. See table 1 for a list of the views and tables generated by the bstat/estat scripts.

This bstat/estat reporting is used in various data gathering strategies :

proactively measure performance for a specific interval

gather session statistics for batch runs or volume measurement.

test performance changes after a tuning effort.

In most cases bstat/estat reporting is used as a reactive method to determine the existence a performance issue. The report is reviewed for the existence of an event or statistic that seems out of range. An effort is then made to implicitly or explicitly tune the anomaly, then re-measure by running the scripts. Although this is the most widely used tool for performance tuning, in most cases application tuning will be the most beneficial method of acquiring solid performance. A well tuned application can reduce excessive parsing, thereby resulting fewer user calls. Also, proper data retrieval will reduce full table scan and excessive block visits.

Bstat/Estat requirements and caveats

Bstat/Estat reporting requires the scripts be run as the sys user (connect internal in svrmgrl) and the init.ora parameter, timed_statistics=true, to be set when the database is brought up. Do not begin to capture statistics as soon as the database is brought, as this will generate inaccurate and unreliable data. Generally it is recommended that the database be running an active system for a couple of hours before reporting is initiated. If the bstat/estat returns negative values for certain statistics, this can be due to a database being shutdown down in between a bstat and estat runs. In addition, negative values can also be caused by overflowing counters. Pre-Oracle 7.3 versions used 32 bit unsigned counters, thus statistics that have values exceeding 1,073,741,823 overflow and generate negative values. Oracle7.3 and above will use double long numbers and may not incur this problem.

Any requirement to increase the database SGA, which subsequently chews up more memory, should be closely monitored for OS paging/swapping.

II. 	Bstat/Estat report layout

The report is broken down into various sections� �:

librarycache statistics

database-wide statistics

wait events statistics

average queue length

I/O statistics by tablespace and file name

I/O statistics by tablespace

latch get statistics

latch no-wait get statistics

rollback segment statistics

dump of the init.ora parameters (that were changed from default)

III.

A.

The first part of the Bstat/Estat report is the library cache statistics for get/pin hits.

The library cache is an integral part of shared pool and contains the shared SQL and PL/SQL areas. User SQL statements are broken down into the shared part and private part. The shared part, which is located in shared pool, contains shareable text such as the parse tree and execution plan. The private part, which is located in user’s PGA (private group area), is further broken down into the persistent and runtime areas. The persistent area exists for the life of the session and lives in PGA’s UGA. The runtime area exists for the life of the statement or call and lives within the PGA’s CGA section.

The library cache, although the most cumbersome to tune can be the most rewarding areas of tuning, since it involves the user’s application. A well-tuned library cache will result in fast access to the shared SQL and PL/SQL areas and thus is a direct impact on the application �.

The library cache statistics report is grouped by the namespace.

Gets	 - lookups for objects in the librarycache; i.e., in memory.

Pins	 - reads or executions of the objects in the librarycache.

Reloads	 -indicates the number of library cache misses on the execution step. This causes Oracle to implicitly reparse the statement and block. In addition, reloads, can also occur if a buffer that contains an object definition is aged out.

Invalidation-caused by altering or dropping a dependent object. An invalidation can also cause reloads. High values are prevalent in a development environment, where objects are continuously

altered or dropped.

The get hit ratio and pin hit ratio should be > 95%. If this isn’t, there may be a need to increase the shared_pool_area. Note, don’t increase shared pool area if “select * from v$sgastat where name=

‘free memory’ ” returns large amounts of free memory. Run the above query repeatedly during the course

of bstat/estat interval.

Reloads should be kept to a minimum, for this causes library cache objects to be reinitialized and read (“reload”) from disk. Reloads should near 0 and the reload ratio, sum(pins)/reloads , should not be more than 1%.

Review the use and possible implementation of the init.ora parameter, CURSOR_SPACE_FOR_TIME (refer to Oracle Manual for details).

Library cache misses can occur at two areas of SQL processing stages, parse and execution . There are three general methods to reduce library cache misses: (1) allocate more memory to library cache via increasing the shared_pool_size init.ora parameter. With a larger pool size, there is a greater probability that SQL areas will be kept in memory instead of being aged out. (2) Write identical SQL statements and use bind variables. This will reduce cache misses on parse calls by ensuring SQL statements share a shared SQL area. (3) Use stored procedures. Stored procedures are stored in the database in a parsed form, and thus automatically share the same PL/SQL area.

B.

 The database-wide statistics section displays all the session statistics that were collected for each category,

by total, per transaction and per logon. Usually we only look at the total statistics. Note these are raw statistics; therefore “real data” needs to be derived (as shown below). Moreover, some of this raw data is generic and is not relevant information, except to the internals group for debugging. Therefore, we will review only those which are applicable to tuning. A large part of these statistics are in reference to DBWR’s functions and its relationship to the management of the LRU list. Therefore a detailed review of this relationship is depicted below .

Database Writer (DBWR) is a server process whose main function is manage the buffer cache. The DBWR maintains the buffer cache by making buffers available when requested and to “clean it” when dirty. The buffer cache is made up of two lists, the dirty list (LRUW list) and LRU list� . Buffers in the LRU can have one of three statuses; free, pinned, or dirty. Free buffers are unused buffers; i.e., a new block that is read into the cache can use it. Pinned buffers are buffers currently being held by a user or have waiters against them. The dirty buffers are modified buffers that have not been moved over to the LRUW end of the cache. How this buffer gets moved over the LRUW cache and subsequently to disk is

the foundation of DBWR’s function and is illustrated below. Note, only buffers in LRUW list are eligible for write-outs (there are exceptions).

DBWR writes buffer blocks to disk when it is signaled to do so. There are four methods in which this happens.

When a server process performs a disk read of a database block, the block must be read into the buffer cache as well. In order to read into cache, a free buffer must exist. To find a free buffer the server process will lock the LRU list and search the list for a free buffer. Dirty buffers that are detected along the way are moved over to the LRUW list; in addition, the dirty buffers inspected and free buffers inspected statistics� are incremented. If a free buffer is not found within the threshold limit, which is 2*_db_block_write_batch, then the search is halted and DBWR is signaled to perform a large synchronous write batch� to clean out the cache.

In addition to the aforementioned scenario, when the foreground process detects a dirty buffer in the LRU and upon moving it to the LRUW list, it detects that the LRUW list is full; i.e., a threshold limit, DBWR is signaled to clean out the cache with the same size batch write.

The DBWR is set to timeout after three seconds of activity. Each timeout will awaken DBWR to search and clean out the cache.

When a checkpoint occurs (either through a threshold value set in init.ora or an explicit alter system command) LGWR will signal DBWR with a array list of dirty buffers to write out. The write size is

 is dictated by db_block_checkpoint_batch parameter.

In general buffers are placed on the dirty list by foreground and background processes. The dirty list becomes full when the list equals 2* write batch size. If a foreground process has to wait for a

free buffer because the dirty list is full, then free buffer waits statistic is incremented. This wait maybe caused by DBWR not completing its write, which equals _db_block_write_batch. DBWR writes these “IO clumps” to disk.; however, after performing this write, DBWR will discover that there are new dirty buffers on the queue again. The number of new dirty buffers on this list are considered to be part of the summed dirty queue length. Therefore the summed dirty queue length is defined as the size of dirty queue after the successful completion of a write batch request. If this queue is larger than write batch, than the dirty list is getting dirty too fast and DBWR can not keep up. See Average Queue Length section of this paper for tuning this area.

Reducing buffer operations will be a direct benefit to DBWR and help overall database performance. Buffer operations can reduced by (1) using dedicated temporary tablespaces, (2) direct sort reads, (3) direct Sqlloads and (4) performing direct exports.

Listed below are derived, tunable, informational statistics from this section of the report

cluster key scan block gets/cluster scans = degree of cluster key chaining. If this value is > 1, then you have some chaining.

cluster Key Scan Block Gets - number of cluster blocks accessed.

cluster Key Scans - number of scans processed on cluster blocks.

 consistent gets + db_block_gets = logical reads

 (logical_reads / (logical_reads + physical reads)) * 100 = logical hitratio

 This value should (generally) be 85-90% on a cooked filesystem and 90-95% for a raw devices�;

 enqueue waits should kept as close to 0 as possible. If much higher and continually increasing,

 then there are signs of possible internal lock contentions. Then possibly increase init.ora parameter

 enqueue_resources.

 Dbwrs free buffers found - is the number of times free buffers were found when requested to search

 LRU block list.

 Dbwr make free requests - is the number of times Dbwr was invoked to free up db_block_buffers

 Dbwr free buffers found / Dbwr make free requests = average number of reusable buffers.

also,

 review dirty buffers inspected, which is the number of modified buffers in the queue; if this

 value is small and the average number of reusable buffers is high, then this indicates that Dbwr is

 performing efficiently and not falling behind.

 free buffers inspected - is the number of buffers Dbwr skipped in order to find a free buffer

 (this includes pinned and dirtied buffers)

Dbwr buffers scanned - total number of buffers scanned in the LRU chain to make clean.

(this includes dirty and clean buffers)

free buffer inspected / Dbwr buffers scanned = ratio of modified blocks in the buffer cache. This

 is also called the Free Buffer Scan Ratio.

If this is high, then there are too many unusable buffers in the cache and thus DBWR is not keeping

up. There may be a need to increase db_block_buffers. The difference between this amount and

dirty buffers inspected is equal to the numbers of buffers that were held by a user

free buffers requested - is the number of times a free buffer was requested to create or load a block.

For informational use only

recursive calls (caused by rowcache misses or reads of segment headers or internal base tables when foreground incurs dynamic extension). recursive calls should be less than user calls. Also, review rowcache hit ratio in the rowcache section of the bstat/estat report, if hitratio is low, then increase shared_pool_size to possibly remedy recursive calls.

parse count / user calls = avg. no of calls per parse. This should be less than 10%.

Users should reduce calls by using array fetches and reduce parsing.

summed dirty queue length/write requests = avg. length of dirty list.

This value will also aid in setting up _db_block_write_batch parm.

redo log space requests. Indicates that the number of times a wait occurred because a redo log file

was full and could not accommodate the flush of a redo buffer to make room for new buffer request.

This statistic is incremented when a user has to wait for a log switch (in progress) to complete or

forces a log switch.

Log space request ratio = redo log space requests/ redo entries

 This should be near as 0 as possible, high numbers indicate a log buffers are not efficiently sized;

therefore possibly increase log_buffers.

redo buffer allocation retries is the number of times user re-tried to allocate a redo buffer, this is caused by redo buffers being busy during log switch (write to disk) and may indicate LGWR is falling behind.

If redo buffer allocation retries/ redo entries should near 0. If not, then log switch frequency or

log sizes need to be reviewed.

Note : redo buffer allocation retries are misses against in-memory redo buffers and redo log space requests are misses against on-disk redo log file space.

(redo size/redo entries) - (redo wastage/redo entries) = avg. redo entry size. This value will aid in sizing logs and checkpoint frequency.

For informational use only

redo small copies/redo entries = the number of entries that were made into the redo log buffer while holding onto the redo allocation latch. If this value is greater than 10% than decrease init.ora parameter log_small_entry_max_size to a size smaller than the avg. redo entry size (calculated above). This parameter, expressed in bytes, indicates the maximum size of the write operation into the redo buffer while holding onto the redo latch, Thus a smaller value reflects a small and fast write and also a faster release of the latch. Note there is only one redo latch on a uniprocessor. However, on SMP systems, there can multiple redo latches allocated by setting the init.ora parameter log_simultaneous_copies to the number of CPUs.

redo wastages is the number of bytes of unused space in the log buffer when writing out the entire redo buffer.

This message is informational This cannot be controlled.

 sorts(disks) - the total number of disks sorts; i.e., this is the number of times sorts could not be

done in memory.

 sorts(memory) - the total number of sorts in memory, as specified by amount

 sort_area_size.sorts(disks)/sorts(memory) * 100 = percentage of sorts done on disk, should be less

 than 10%, if high possibly increase sort_area_size.

 summed dirty queue length - numbers of buffers pending for writing; i.e., the length of LRUW

 after the write request finished.

 table fetch by rowid - the number of logical rows fetched from a table by rowid (either using

 indexes or ‘rowid=‘).

 table fetch continued row - the number of chained rows detected.

 table fetch continued row to table fetch by rowid ratio should be 1:1000 , the exception is that the

 database contains no long datatypes.

 table scan blocks gotten and table scan rows gotten are respectively, the total number of blocks

 and rows fetched during full table scans to determine the average number of rows gotten per block

 for full table scans:

 table scan rows gotten / table scan blocks gotten * 100 - this should be a high number for DSS

 systems.

 Table Scans (short) * 5 blocks = Blocks Scanned (short)

 Table Scan Blocks Gotten - Blocks Scanned (short) = Blocks Scanned (long)

 locks Scanned (long) / Table Scans (long tables) = Average number of blocks scanned per long

 table.

 table scans (long tables) - the number of full tablescan performed on tables with 5 or more blocks.

 This number under the “per trans” column should not be greater than 0. If this is, than you need to

 review the application to use indexes.

 table scans (short tables) - the number of full tablescan performed on tables with less than 5 blocks�.

 Table Scans (long tables) plus Table Scans (short tables) is equal to the number of full table scans

 performed during this interval.

 user calls - This is the total number of oracle kernel calls made by users. Kernel calls are made

 when parsing SQL statements. Review parse count.

 user commits - This is the total number of commits and should equal user calls - user rollbacks .

C.

This section layouts the system-wide wait events. These events are not widely documented. As with

system-wide statistics, the majority of the wait events are for internal debugging use only. Listed below

are some of documented and ubiquitous waits to watch for. Note, not all wait events are necessarily

tunable, some are merely statistics for show. If you are comparing bstat/estat reports with different run intervals it would be unwise to compare the total time or counts, instead contrast the average times for

each event.

free buffer waits - is the number of times processes had to wait because a buffer was not available. This can occur when Dbwr reaches the free buffers inspected limit. A high number indicates that Dbwr is not writing enough dirty buffers to disk.

If free buffer waits / free buffers scanned * 100 > 5% than possibly increase

db_block_write_batch. Also check for disk contention.

buffer busy waits - is the number of times processes had to wait for buffer. This happens because either the buffer is being read in the cache by another user or the status of buffer is incompatible with requested mode.

(buffer busy waits)*100 / (db blocks gets + consistent gets) should not be > 5%.

 Perform a “select * from v$waitstat “ to determine what type of objects have waits against them

 and tune accordingly.

client message - this event indicates that the Oracle foreground process is waiting for a message from the client. This is idle time for the Oracle server. This could be a possible network problem,

control file parallel write - this is the time accumulated while Oracle is writing physical blocks to the controlfile and also making sure all the controlfiles are in sync.

control file single write - this is the time required to perform a single write operation to the control file. If this time is high, then check to make sure the disk does not have I/O contention.

db file sequential read, db file scattered read, db file single write and db file parallel write are all events corresponding to I/Os performed against the data files headers, control files, or data files. If any of these wait events correspond to high Average Time, then investigate the I/O contention via sar or iostat. Look for busy waits on the device.

enqueue - this time Oracle is waiting on an enqueue. If the Average Time for this event is high,

review v$session_waits where event =’enqueue’.

latch free - the time waiting for a particular latch to become free, this time does not include time

 spinning on the latch. If count is very high, then there is some internal latch contention. Do not

 tune without help from WWS.

log buffer space - time spent waiting for space in the log buffer. This is an indication that the

 buffers are being filled up faster than lgwr is writing. This may also indicate disk I/O contention.

 If the count is very high, increase lgwr buffers and/or investigate disk I/O contention where the

 redo logs reside.

log file space/switch - this is the time Oracle spent waiting for the space on disk for lgwr to complete the write of log buffers to the redo log. This may be an indication to increase log buffers.

“select a.value / decode(b.value,0,1,b.value) from v$sysstat a, v$systat b where

a.name = ‘redo size’ and b.name = ‘user commits’;

 this provides the average number redo records per commit. Now you must determine the average

 number of commits per second and multiply times the average number redo records per commit

 (calculated above), this will provide the max log buffers to setup.

In Pre-Oracle 7.3, this event was a very generic indicator of waits against log files. However, in

Oracle 7.3 and above the following new events have been added to uniquely identify the wait :

log buffer space

log file switch (checkpoint incomplete)

log file switch (archiving needed)

log file switch (clearing log file)

log file switch completion

switch logfile command

�D.

AVERAGE WRITE QUEUE LENGTH:

This is the average queue length of the dirty buffer write queue after a write request by DBWR . This queue length should be compared to the init.ora parameter db_block_write_batch, if the queue length is 2 times larger �, than there may be a need to increase the aforementioned parm. This parameter dictates the write size (write batch size) for DBWR. A larger size will mean a larger write and thus less signals for DBWR perform writes; however, making this parm too large will cause DBWR to be I/O bound.

Also, review any possible disk contention.

E & F.

Section E displays the database I/O (physical reads, physical writes, physical blocks read, physical blocks written and physical write time). as grouped by tablespace_name and file_name.

The section immediately following this one, section F, includes the same set statistics but is grouped by tablespace_name only.

These report infers hot spots on disk; however, with the advent of RAID striping technology (software or hardware)�, datafiles can now be spread over 5-8 disks. Thus making it difficult not only to determine disk hot spots, but alleviating them as well. Nevertheless, this report is relevant when evaluating I/O load balancing; i.e., determining that the most heavily accessed datafiles are not placed on the same LUN or RAID controller. The heavy datafile access should be cross referenced with the monitoring of iostat

statistics, to determine if there is a possible I/O bottleneck.

Generally, this report can be used to determine which datafiles are read or written to the most. Also, the following information can be deduced from this report.

If phys_blks_rd > phy_reads, then there is full table scanning occurring for the corresponding datafile.

If the temporary tablespace is being hit very hard, then the sorting is not being done in memory.

If the system tablespace is referenced excessively, then this needs to investigated. Insure that no user objects are created in the system tablespace. In addition, safeguard that no user’s default tablespace is set to system. The holds true for the sys and system ids as well.

G.

Section four provides statistics on latch waits. Latches are fast and inexpensive locking mechanisms

that serialize operations to low-level resources. Latches are fast because they hold their resources for very

short periods of time. To view all the latches available on the system,

 “select latch#, name from v$latchname”.

Note, that each latch performs a distinct set of operations. Latches are implemented as either wait or no wait latches, this is dependent upon the operations they perform. Nowait latches, are request using the immediate request call and thus do not wait for latches to become free, they simply timeout. Wait latches are requested with “willing-to-wait” request. This process will continue to wait and request until the latch is gotten. Latches are implemented as memory locations in the SGA and are “tested then set” operations.

Latch get hit ratio is (gets - misses) / gets, this number should be close to 1. If not tune the accordingly to the latch name.

Nowait hitratio is calculated as : (nowait_gets - nowait_misses) / nowait_gets, this value should also be

close to 1.

Wait latches (“willing-to-wait”)

Gets - successful request for a latch. Gets incremented after the latch is finally is acquired.

Misses - indicates the number of unsuccessful initial tries.

Sleeps - indicates the number of latch tries after the initial attempt; i.e., after the Miss.

Nowait latches (immediate)

immediate gets - successful request for a latch using immediate call.

Immediate misses - indicates the number of unsuccessful initial tries.

Note, there is no Sleeps value associated with the immediate latches, since they timeout.

Not all latch indicators will be listed here, only the ubiquitous entries. Moreover, not all entries listed are

tunable, but shown merely for description. Each entry in this report correlates to particular latch.

archive control - The archive control latch protects the archive destination string in the SGA. If a session wants to update or read the archive destination, it will get this latch to make sure that the session gets a consistent view.

cache buffer handles - This latch protects the State Objects that are needed by a process to make a change to a block/buffer. Before the change a buffer handle is acquired either from the process’ private pool or the global pool if none are present. The access to the global pool is protected by this latch.

cache buffer chains - Before modifying a buffer the foregrounds need to get a latch to protect the buffer from being updated by multiple users. Several buffers will get hashed to the same latch. The buffers get hashed to a cache buffer chain latch depending on the DBA of the block that is in the buffer.

cache buffer lru chain - Protects the Least Recently Used list of cache buffers. For moving buffers around on this list the Oracle7 kernel needs to get this latch. If the contention for this latch is high, it may require the _db_block_write_batch to be increased or _db_writer_max_scan_cnt to be decreased. Note, for SMP systems, the LRU latch can be controlled via the init.ora parameter db_block_lru_latches. Oracle by default will set this value to ½ * #CPUs. This parameter dictates the number of LRU latches per instance. This will alleviate the LRU from being the bottleneck, since each LRU will maintain a list of block buffers (buffers are assigned to a LRU via hashing). Generally db_block_lru_latches is set to no more than 2*#CPUs.

cache protection latch - During the cloning of a buffer the buffer header is atomically updated to reflect the new position in the buffer cache. Only one buffer at the time may be cloned, as it is protected by this latch. A lot of contention on this latch would indicate that there is a lot of concurrent cloning going on.

redo allocation - The redo allocation latch is used to allocate the redo buffers in the redo log buffer. It is also gotten we Oracle7 needs to advance to SCN as part of a checkpoint. This way we can make sure that nobody can use the new SCN number. See redo allocation retries in the statistics section for tuning.

redo copy - When a redo buffer has been allocated and the size of the redo is larger than log_small_entry_max_size, the kernel will allocate a redo copy latch. The number of redo copy latches is controlled by the init.ora parameter log_simultaneous_copies (defaults to the number of CPUs). The LGWR will get all the redo copy latches before it will write redo to make sure that nobody is writing in redo buffers that are currently written. See redo small copies in the statistics section for tuning.

H.

This section contains statistics for Rollback Segments. Rollback segments (rbs) are used to store undo

or before-change information. This info will be used to rollback or undo a transactions’s data changes. A transaction is assigned to a particular rbs on a round-robin fashion. A user will access the rbs segment header first, update the header , then acquire a undo block within that segment. It is very important that user acquire the rbs header and the rollback data block as soon as possible and not incur a wait. This report will illustrate these waits as well as bytes written, shrinks and wraps.

Undo segment 	- also called the usn number, this number corresponds to the rollback segment name

 	 	 perform “select name from v$rollname”.

Trans_tbl_gets	- blocks gets for rbs

trans_tbl_waits	- number of waits against the rbs. There should be no waits for rbs. If only one rbs has

 	 a wait, then continue to monitor. If more than one rbs has wait ratio

 (waits/gets) > 5%, then there may be a need to create more rbs.

 Also, review “select * from v$waitstat where class like ‘%undo%’;

Undo_bytes_written- the number of bytes written to the rbs

segment_size_bytes - the allocated size of the rbs

xacts 		 -number of active transactions against the rbs

shrinks 		 -number of shrinks due to the use of OPTIMAL parameter.

Wraps		 -the number times of the rbs wraps from one to the next

I.

The Rowcache (Data Dictionary Cache) statistics report illustrates the cache hit ratio with respect to the internal dictionary. The Data Dictionary cache resides in the shared_pool_area, along with the library cache. The rowcache stores database information such as usernames, synonyms, constraints, segment extents and many other database object definitions. When a Sql statement gets parsed, Oracle must validate the table names, column to table relationships, and security access. To resolve or validate this info, Oracle searches the rowcache, if it does not exist here, a recursive call is made to retrieve it from the System tablespace; ie, disk I/O. The validation (upwards to six cross-table-references per call) is made for each SQL statement. This scenario is more expensive for DML statements, as rowcache entries must be read, validated and updated. For this reason, it is very important that rowcache have a high hit ratio. Recursive calls, which are calls to data dictionary�, can also be made on behalf space management requests and PL/Sql compilation. Space management processing includes object allocation/de-allocation and extent management.

The Rowcache statistics entries are broken down into individual rowcache components that reminiscent of the Oracle version 6 days. Although you cannot individually tune the dictionary components anymore, you can still review the overall hit ratio using the following calculation:

	(get-reqs - getmisses) / get_reqs

This should not be greater than 10%. If it is, there may be a need to possibly increase shared_pool_size.

�

TABLE 1

 Beginning Table Name Description

 -------------------------		 ---------------------

 stats$begin_dc	Dictionary Cache Statistics from v$rowcache

 stats$begin_event	System Wide Wait Statistics from v$system_event

 stats$begin_file 	Table of File I/O Stats from stats$file_view

 stats$begin_latch Latch Statistics from v$latch

 stats$begin_lib 	Library Cache Statistics from v$librarycache

 stats$begin_roll 	Rollback Segment Statistics from v$rollstat

 stats$begin_stats General System Stats from v$sysstat

 stats$file_view 	View of File I/O Statistics from v$filestat, v$datafile, ts$, file$

 stats$dates 	Table containing beginning vdate and time

 Ending Table Name Description

 ------------------------	 --------------------------

 stats$end_dc 	Dictionary Cache Statistics from v$rowcache

 stats$end_event 	System Wide Wait Statistics from v$system_event

 stats$end_file 	Table of File I/O Stats from stats$file_view

 stats$end_latch 	Latch Statistics from v$latch

 stats$end_lib 	Library Cache Statistics from v$librarycache

 stats$end_roll 	Rollback Segment Stats from v$rollstat

 stats$end_stats 	General System stats v$sysstat

The summary statistics tables created by the utlestat script are

listed below:

 Table Name Description

 ---------- 	 -----------

 stats$dc 	Dictionary Cache Statistics

 stats$event 	System Wide Wait Statistics

 stats$files 	File I/O Statistics

 stats$latches 	Latch Statistics

 stats$lib 	Library Cache Statistics

 stats$roll 	Rollback Segment Statistics

 stats$stats 	General System Statistics

 stats$dates 	Table containing ending date and time

�
References

Oracle Server Tuning, Oracle Corp.

Oracle Advanced Tuning, pg 149-170, Oracle Press

Optimizing Oracle 7.1 Database Performance

Oracle Backup and Recovery Handbook, 7.3 Edition

� For every section in the bstat/estat report, a set of SQL that generated that report is listed.

� In some of the sections, only the statistics and events that have occurrences greater than 0 are shown..

� Active library cache statistics (since database startup) are reflected in the V$LIBARARYCACHE view.

� Although the buffer cache is depicted as pool of buffers, its really a linear array.

� During the LRU search, if a pinned buffer is detected, it is not moved over to the LRUW list, but the free buffer inspected statistic is incremented.

� The large batch write is dictated by the _db_block_write_batch parameter. After 7.2, this init.ora parameter is set to 0 by default, and Oracle dynamically determines the new value via min(½* db_file_ simultaneous_writes, max_batch_size,buffers/4). The _db_block_write_batch parameter influences the

behavior of many other DBWR’s functions, such as DBWR buffer scan depth; therefore, the recommendation is not to alter this parameter.

� The logical hit ratio for heavy OLTP systems may be artificially higher due to the influence of index range scans on logical I/Os.

� Tables created with the CACHE option are considered candidates for short tables.

� An alternative derivation is to determine if the average queue length is larger than (db_files * db_file_simultaneous_writes)/2 or (¼ * db_block_buffers), which ever is smaller. If so, then increase either db_files or db_file_simultaneous_writes. As noted earlier, it is note recommended to alter the value of _db_block_write_batch.

� In most cases RAID striping, with the appropriate stripe size, will yield the maximum disk I/O

throughput. In addition, utilize list I/O and async I/O, if available on the system.

� Recursive calls are defined as calls built by the Oracle kernel rather than a user or

appliction.

�PAGE �

�PAGE �13�

Oracle Utlbstat/Utlestat	

� DATE �09/12/97�

