INTERPRETING AND APPLYING EXPLAIN PLAN RESULTS

David W. Hathway

TUSC - The Ultimate Software Consultants

This paper will introduce execution plans and discuss their potential value to an Oracle project. Then it will cover simple Explain Plan examples to illustrate the fundamental Access Paths Oracle uses to process a SQL Statement. For each example the execution tree will be constructed to give the audience a feel for the step by step nature of how Oracle processes a SQL statement. Based on this foundation, more complex examples will be presented to illustrate performance related concepts such as table join order and index suppression. The ultimate goal of the paper is to peak the audiences curiosity about using these techniques so they will start using them back in their own familiar development environments to improve their SQL tuning skills.

Contents

INTRODUCTION - EXPLAIN PLAN BASICS

The Explain Plan Utility and the Execution Plan

Why are Execution Plans Important?

Execution Plan Format

The Execution Tree

Execution Plan Interpretation

EXECUTION PLAN EXAMPLES

Table Access Full

Table Access By ROWID

Index Unique Scan

Index Range Scan

Table Join

Table Join Starting with Customer

Tuned Query

SUMMARY

1. Introduction - Explain Plan Basics

1.1. The Explain Plan Utility and the Execution Plan

Oracle’s Explain Plan utility is used to insert execution plan information for a given SQL statement into the designated plan table. Once in the plan table, the data can be extracted via SQL and viewed to determine the execution plan for the SQL statement. The execution plan tells you how Oracle is going to process the SQL statement.

There are literally thousands of custom programs out there developed on various projects as well as Oracle products and third party tools that use Oracle’s Explain Plan utility behind the scenes to generate execution plans for SQL statements. Some tools can even extract SQL from a variety of sources (the SGA, Pro*c, SQR, etc..) and automatically generate the execution plans for each SQL statement.

1.2. Why are Execution Plans Important?

If having quality SQL that performs well is important to your project, then execution plans are important. Anyone who is tuning SQL must understand how Oracle is going to process the statement in order to determine why the SQL is slow and to identify ways of making it faster. Also, I believe that developers who actively pursue an understanding of how Oracle processes SQL statements code better SQL both from a functional and performance perspective. For example, when constructing a mutli-table join, the developer who is familiar with Oracle execution plans, and who actively uses them as a development tool for sufficiently complex statements, will uncover functional, data model and performance issues much sooner in the development process than otherwise. Such developers will also be gaining critical application tuning skills and experience. Why let the DBA’s have all the fun?

The bottom line here is that in order to develop quality, high-performance SQL, tune existing SQL, and grow developers with key SQL tuning skills, some form of the Explain Plan utility to generate execution plans for SQL statements, that is easy to use and available to all developers, should be apart of any Oracle project.

1.3. Execution Plan Format

Execution plans can be displayed in many different formats. This paper uses two formats throughout: The text version and the graphical version. We will refer to the text version as the execution plan and the graphical version as the execution tree. The execution plans shown in this paper were generated from the SQL statement shown in figure 1.

SELECT 	 LPAD(' ',2*(LEVEL-1))||operation 			“OPERATION”

		,options 						“OPTIONS”

		,DECODE(TO_CHAR(id),'0','COST = ' ||

			NVL(TO_CHAR(position),'n/a'), object_name)	“OBJECT NAME”

 	,id ||'-'|| NVL(parent_id, 0)||'-'|| NVL(position, 0)	“ORDER”

	 	,SUBSTR(optimizer,1,6) 					“OPT”

FROM	 	 plan_table

START WITH 	 id = 0

AND 	 statement_id = 'X'

CONNECT BY 	 PRIOR id = parent_id

AND 	 statement_id = 'X';

Figure 1. Execution Plan SQL.

An example SQL statement and the corresponding execution plan is shown is figure 2.

SELECT cust_no ,cust_address ,cust_last_name ,cust_first_name ,cust_mid_init

FROM customer

WHERE cust_phone = '3035551234';

OPERATION OPTIONS OBJECT NAME ORDER OPT

----------------------------- ------------ -------------------- ------- ------

SELECT STATEMENT COST = n/a 0-0-0 RULE

 TABLE ACCESS BY ROWID CUSTOMER 1-0-1

 INDEX RANGE SCAN IX_CUST_PHONE 2-1-1

Figure 2. Index Range Scan

This execution plan has the following columns:

OPERATION	The first row contains the statement type, and subsequent rows contain the internal operation performed in the step. This column is indented based on the level within the hierarchical query, thus showing the parent-child relationships between the rows.

OPTIONS	This column contains a further qualification of the OPERATION.

OBJECT NAME	The first row contains the estimated cost of the statement if it was Explained under cost based optimization. For rule based, ‘n/a’ is displayed. Subsequent rows contain the name of the object the OPERATION is being performed on.

ORDER	This column contains the id, the parent id and the position of the step in the execution plan. The id identifies the step but does not imply the order of execution. The parent id identifies the parent step of the step. The position indicates the order in which children steps are executed that have the same parent id.

OPT	This column contains the current mode of the optimizer.

1.4. The Execution Tree

Based on the execution plan in figure 2, an execution tree can be constructed to get a better feel for how Oracle is going to process the statement. To construct the tree, simply start with step 1, find all other steps whose parent step is 1 and draw them in. Repeat this until all the steps are accounted for. The execution tree for the execution plan in figure 2 is displayed in figure 3.

�

1.5. Execution Plan Interpretation

To understand how Oracle is going to process a statement you must understand what sequence Oracle is going to process the steps in and what Oracle is doing in each step.

The sequence is determined by the parent child relationship of the steps. Basically, the child step is always performed first, at least once, and feeds the parent steps from there. When a parent has multiple children, children step are performed in the order of the step position which is the 3rd number displayed in the ORDER column of the execution plan. When the execution tree is constructed, if the lower position children for a parent are arranged left to right, then the execution tree will read left to right, bottom to top.

In the example in figure 3, step two is the only child step and is executed first. It performs and index range scan and returns a list of ROWID’s to its parent step 1. For each record returned by step 2 to step 1, step 1 performs a table access by ROWID to retrieve the data.

2. Execution Plan Examples

In this section several SQL statements will be displayed with their execution plan and tree and then discussed to describe the statement, the sequence in which it is executed, and the performance implications of the statement. The tables and indexes used in the examples are described below:

Customer table		Order table

Unique index on cust_no	Unique index on order_no

Index cust_phone		Index on cust_no

				Index on order_status

2.1. Full Table Scan

�

SQL: Here we want to see customer information for every customer in the table.

Execution Plan Sequence: This statement has only one step and will return all the rows in the table.

Performance: A full scan of a table is a table access option that is always available for the optimizer to use and sometimes is the only option. Depending on what you are trying to accomplish, a full table scan may or may not be a bad thing. Full scans are generally bad when the table is large and the number of rows returned based on the WHERE clause is small. In these cases you would get much better performance from an index range or unique scan. When the table is small, or when you are selecting a decent percentage of the table (rule of thumb > 5%), it may be faster to perform an full scan on the table. After all, would you use an index to find something in a 1 page book?

2.2. Table Access By ROWID

�

SQL: Here we are accessing the customer table using the ROWID.

Execution Plan Sequence: This statement has only one step and will return 0 or 1 rows.

Performance: ROWID is Oracle’s disk address for a row and is the fastest method of access. The ROWID is made up of file number, block number and row number within the block, and thus uniquely identifies a row within the entire database.

2.3. Index Unique Scan

�

SQL: Here we want to see customer information for the customer with the specified customer number.

Execution Plan Sequence: This statement has two steps. The child step 2 is executed first. Because it is a unique scan, it will return either 0 or 1 rows to step 1. Step 1 will take the ROWID returned from step 2 and use it to access the customer table just as in the ROWID example.

Performance: Not including clusters and hash keys access paths, index unique scans are second only to ROWID in performance for accessing a row. Index unique scans are only possible if a unique index exists on the table, and every column in the unique index appears in the WHERE clause with an equality condition. Each condition also must be combined with an AND operator. In this case cust_no is the only column in the unique index, and an equality condition is imposed, therefor a unique scan is possible and in fact used.

2.4. Index Range Scan

SQL: For this example please refer to figures 2 and 3. Here we want to see customer information for the customer(s) with the specified phone number. Have you ever ordered pizza over the phone and they ask for is your phone number, and then all of a sudden they know you name and address? This is the query.

Execution Plan Sequence: This statement has two steps. The child step 2 is executed first. Because it is a range scan, it will return 0, 1 or many rows to step 1. Step 1 will take each ROWID returned from step 2 and use it to access the customer table just as in the first ROWID example.

Performance: In a query with an index range scan such as this one, you should always question whether or not using the index versus a full scan will be better. In this case, this index is a good idea, given a sufficiently large customer table, because phone numbers tend to be very distinct. If the query was only searching on zip code for example, and there were only 10 distinct zip codes in the customer table, the index would probably be a bad idea. If you determine that the query is using an index and you don’t want it to, you can either drop the index or suppress the index using index suppression hits mentioned later in the paper, or by using Oracle hints. Dropping the index could be risky though because other applications may need it.

2.5. Table Join

�

SQL: Here we want to see all open customer orders for customers with the specified phone number - customer service - Where’s my PIZZA!

Execution Plan Sequence: This statement has five steps. Child step 3 is executed first. Because it is a range scan, it will return 0, 1 or many ROWID’s to step 2. For each ROWID returned, Step 2 will access the order table by ROWID, get the requested data, and return the data to step 1. For each row of data received from step 2, Step 1 will send the cust_no to step 5. Step 5 will use the customer number to perform a unique scan to get the ROWID. The ROWID will then be returned from step 5 to step 4. If no ROWID was found, step 4 will tell step 1 to eliminate that particular row. If a ROWID was found, step 4 will access the table by ROWID, retrieve the data. Once it gets the data, if the phone number is correct, it will return the data to step 1, where it will be merged with the result from steps 2 and 3 for that row and returned to the user. If the phone number is incorrect, step 4 will return no row and step 1 will thrown the row out.

Performance: Is this a good table access order? In most order entry systems where there lots of customers and many open orders at a given time, why would you want to spin through all open orders first, get the data and for each one, go to the customer table for each of those and then through out all but the one open order for the customer with the right phone number? To correct this situation, you want to first go to the customer table based on phone number because most of the rows will be filtered out in the first step, thus improving performance. How do we do this? We’ll see in the next section.

2.6. Table Join Starting with Customer

�

SQL: Same as 2.5.

Execution Plan Sequence: To make a long story short - 3, for each 3 do 2, for each 2 do 1, for each 1 do 6, for each 6 do 5, for each 5 do 7 and return intersection of 6 and 7 to 4, for each 4 return data to 1, loop until complete.

Performance: Why did the table order change? In rule based optimization, when faced with multiple tables to join and identical access paths to enter into each (in this case, each table starts with an index range scan on a single column index), the table lowest in the FROM clause gets accessed first. So by switching the FROM clause around the execution plan changed. In COST based optimization, it may have figured this out in the first place based on table and index statistics. If not, hints could have been used to achieve the same result.

Is this a good table access order? The table order is good because he customer half of the query is executed first and will probably return only one row to the order half of the query.

Is the AND-EQUAL optimal? In this case no. Why churn through 1000 ROWID’s in the order_status index, and all the ROWID’s in the cust_no index and only keep the ones that match? What we should do is either pick the most unique index of the two and use it, or create a composite index on cust_no and order status. How can we stop Oracle from using the order status index? We’ll see the next section.

2.7. Tuned Query

�

SQL: Same as 2.5.

Execution Plan Sequence: To make a long story short - 3, for each 3 do 2, for each 2 do 1, for each 1 do 5, for each 5 do 4, for each 4 return data to 1, loop until complete.

Performance: Here we used an index suppression technique to stop Oracle from using the order_status index. Whenever any manipulation of a column is performed such as a function, concatenation or mathematical formulas, the index can not be used by Oracle. Now given the indexes we have, this query is tuned assuming there are more open orders in the system than orders for the customer with the specified phone number.

3. Summary

To determine how Oracle is going to process a SQL statement you must generate and interpret an execution plan for the statement. With access to tools that can generate execution plans for SQL, along with a rudimentary understanding of the information that is an execution plan and the knowledge of how to construct an execution tree, a developer or DBA can begin exploring the vast variety of explain plans their diverse SQL code will produce, and learn fairly quickly how to tune and develop quality SQL.

About the Author

David W. Hathway is a Technical Managing Consultant at TUSC and a certified Oracle DBA. He has 5 years experience with Oracle, primarily in the database administration and SQL tuning areas. Dave can be reached at (303)664-3031 or hathwayd@tusc.com.

